ABSTRACT
Inherited disorders of fibrinogen affect either the quantity (afibrinogenemia and
hypofibrinogenemia) or the quality (dysfibrinogenemia) of the circulating fibrinogen
or both (hypodysfibrinogenemia). Most often, patients with congenital fibrinogen disorders
suffer from a bleeding diathesis but paradoxically may undergo severe thrombotic episodes.
Pregnancy loss is another common clinical complication. Even in specialized laboratories,
the precise diagnosis of some fibrinogen disorders may be challenging. Characterization
of the molecular defect(s) is important as it provides a more accurate diagnosis,
may enable prenatal diagnosis, will help elaborate a diagnostic strategy, and may
distinguish in some cases those patients at risk of thrombosis rather than bleeding.
However, the phenotype-genotype correlation is not easy to establish, and global hemostasis
assays may provide a better evaluation of the patient's hemostatic state. Replacement
therapy is effective in treating bleeding episodes, but it is important to tailor
individual treatments because the pharmacokinetics of fibrinogen after replacement
therapy is highly variable among patients. Although the number of cases studied and
identified mutations are already quite substantial, the collection and comparison
of molecular, biochemical, and clinical data will continue to yield valuable information
on the development and course of these diseases, as well as on the choice of the most
appropriate treatments.
KEYWORDS
Bleeding disorder - fibrinogen - afibrinogenemia - dysfibrinogenemia - hypofibrinogenemia
REFERENCES
- 1
Haverkate F, Samama M.
Familial dysfibrinogenemia and thrombophilia. Report on a study of the SSC Subcommittee
on Fibrinogen.
Thromb Haemost.
1995;
73
151-161
- 2
Lak M, Keihani M, Elahi F, Peyvandi F, Mannucci P M.
Bleeding and thrombosis in 55 patients with inherited afibrinogenaemia.
Br J Haematol.
1999;
107
204-206
- 3
Acharya S S, Coughlin A, Dimichele D M. North American Rare Bleeding Disorder Study
Group .
Rare Bleeding Disorder Registry: deficiencies of factors II, V, VII, X, XIII, fibrinogen
and dysfibrinogenemias.
J Thromb Haemost.
2004;
2
248-256
- 4
Bolton-Maggs P HB, Perry D J, Chalmers E A et al..
The rare coagulation disorders—review with guidelines for management from the United
Kingdom Haemophilia Centre Doctors' Organisation.
Haemophilia.
2004;
10
593-628
- 5
Peyvandi F, Haertel S, Knaub S, Mannucci P M.
Incidence of bleeding symptoms in 100 patients with inherited afibrinogenemia or hypofibrinogenemia.
J Thromb Haemost.
2006;
4
1634-1637
- 6 McDonagh J.
Dysfibrinogenemia and other disorders of fibrinogen structure or function. In: Colman R, Hirsh J, Marder V, Clowes A, George J Hemostasis and Thrombosis. Basic
Principles and Clinical Practice. Philadelphia, PA; Lippincott Williams & Wilkins
2001: 855-892
- 7
Maghzal G J, Brennan S O, Homer V M, George P M.
The molecular mechanisms of congenital hypofibrinogenaemia.
Cell Mol Life Sci.
2004;
61
1427-1438
- 8
Neerman-Arbez M, de Moerloose P.
Mutations in the fibrinogen gene cluster accounting for congenital afibrinogenemia:
an update and report of 10 novel mutations.
Hum Mutat.
2007;
28
540-553
- 9
Mosesson M W, Siebenlist K R, Meh D A.
The structure and biological features of fibrinogen and fibrin.
Ann N Y Acad Sci.
2001;
936
11-30
- 10
Kant J A, Fornace Jr A J, Saxe D, Simon M I, McBride O W, Crabtree G R.
Evolution and organization of the fibrinogen locus on chromosome 4: gene duplication
accompanied by transposition and inversion.
Proc Natl Acad Sci U S A.
1985;
82
2344-2348
- 11
Fuller G M, Zhang Z.
Transcriptional control mechanism of fibrinogen gene expression.
Ann N Y Acad Sci.
2001;
936
469-479
- 12 Mosesson M W.
Hereditary fibrinogen abnormalities. In: Lichtman MA, Beutler E, Kaushansky K, Kipps TJ, Seligsohn U, Prchal J Williams
Hematology, 7th ed. New York, NY; McGraw-Hill 2005: 1909-1927
- 13
Rabe F, Salomon E.
Ueber-faserstoffmangel im Blute bei einem Falle von Hämophilie.
Arch Intern Med.
1920;
95
2-14
- 14
Peyvandi F, Kaufman R J, Seligsohn U et al..
Rare bleeding disorders.
Haemophilia.
2006;
12(Suppl 3)
137-142
- 15
Ehmann W C, al-Mondhiry H.
Congenital afibrinogenemia and splenic rupture.
Am J Med.
1994;
96
92-94
- 16
Suh T T, Holmbäck K, Jensen N J et al..
Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient
mice.
Genes Dev.
1995;
9
2020-2033
- 17
Iwaki T, Sandoval-Cooper M J, Paiva M, Kobayashi T, Ploplis V A, Castellino F J.
Fibrinogen stabilizes placental-maternal attachment during embryonic development in
the mouse.
Am J Pathol.
2002;
160
1021-1034
- 18
Dupuy E, Soria C, Molho P et al..
Embolized ischemic lesions of toes in an afibrinogenemic patient: possible relevance
to in vivo circulating thrombin.
Thromb Res.
2001;
102
211-219
- 19
Girolami A, Ruzzon E, Tezza F, Scandellari R, Vettore S, Girolami B.
Arterial and venous thrombosis in rare congenital bleeding disorders: a critical review.
Haemophilia.
2006;
12
345-351
- 20
De Marco L, Girolami A, Zimmerman T S, Ruggeri Z M.
von Willebrand factor interaction with the glycoprotein IIb/IIa complex. Its role
in platelet function as demonstrated in patients with congenital afibrinogenemia.
J Clin Invest.
1986;
77
1272-1277
- 21
Korte W, Feldges A.
Increased prothrombin activation in a patient with congenital afibrinogenemia is reversible
by fibrinogen substitution.
Clin Investig.
1994;
72
396-398
- 22
de Bosch N B, Mosesson M W, Ruiz-Sáez A, Echenagucia M, Rodriguez-Lemoin A.
Inhibition of thrombin generation in plasma by fibrin formation (antithrombin I).
Thromb Haemost.
2002;
88
253-258
- 23
Mosesson M W, Antithrombin I.
Antithrombin I. Inhibition of thrombin generation in plasma by fibrin formation.
Thromb Haemost.
2003;
89
9-12
- 24
Ni H, Denis C V, Subbarao S et al..
Persistence of platelet thrombus formation in arterioles of mice lacking both von
Willebrand factor and fibrinogen.
J Clin Invest.
2000;
106
385-392
- 25
Remijn J A, Wu Y-P, Ijsseldijk M J, Zwaginga J J, Sixma J J, de Groot P G.
Absence of fibrinogen in afibrinogenemia results in large but loosely packed thrombi
under flow conditions.
Thromb Haemost.
2001;
85
736-742
- 26
Henselmans J M, Meijer K, Haaxma R, Hew J, van der Meer J.
Recurrent spontaneous intracerebral hemorrhage in a congenitally afibrinogenemic patient:
diagnostic pitfalls and therapeutic options.
Stroke.
1999;
30
2479-2482
- 27
Brennan S O, Wyatt J, Medicina D, Callea F, George P M.
Fibrinogen brescia: hepatic endoplasmic reticulum storage and hypofibrinogenemia because
of a gamma284 Gly—> Arg mutation.
Am J Pathol.
2000;
157
189-196
- 28
Brennan S O, Maghzal G, Shneider B L, Gordon R, Magid M S, George P M.
Novel fibrinogen gamma375 Arg—> Trp mutation (fibrinogen aguadilla) causes hepatic
endoplasmic reticulum storage and hypofibrinogenemia.
Hepatology.
2002;
36
652-658
- 29
Dib N, Quelin F, Ternisien C et al..
Fibrinogen angers with a new deletion (gamma GVYYQ 346-350) causes hypofibrinogenemia
with hepatic storage.
J Thromb Haemost.
2007;
5
1999-2005
- 30
Hayes T.
Dysfibrinogenemia and thrombosis.
Arch Pathol Lab Med.
2002;
126
1387-1390
- 31
Colvin R B, Mosesson M W, Dvorak H F.
Delayed-type hypersensitivity skin reactions in congenital afibrinogenemia lack fibrin
deposition and induration.
J Clin Invest.
1979;
63
1302-1306
- 32
Roberts H R, Stinchcombe T E, Gabriel D A.
The dysfibrinogenaemias.
Br J Haematol.
2001;
114
249-257
- 33
Neerman-Arbez M, Honsberger A, Antonarakis S E, Morris M A.
Deletion of the fibrinogen alpha-chain gene (FGA) causes congenital afibrinogenemia.
J Clin Invest.
1999;
103
215-218
- 34
Vu D, Neerman-Arbez M.
Molecular mechanisms accounting for fibrinogen deficiency: from large deletions to
intracellular retention of misfolded proteins.
J Thromb Haemost.
2007;
5(Suppl 1)
125-131
- 35
Platè M, Asselta R, Peyvandi F, Tenchini M L, Duga S.
Molecular characterization of the first missense mutation in the fibrinogen Aalpha-chain
gene identified in a compound heterozygous afibrinogenemic patient.
Biochim Biophys Acta.
2007;
1772
781-787
- 36
Platè M, Asselta R, Spena S et al..
Congenital hypofibrinogenemia: characterization of two missense mutations affecting
fibrinogen assembly and secretion.
Blood Cells Mol Dis.
2008;
41
292-297
- 37
Galanakis D K, Neerman-Arbez M, Scheiner T et al..
Homophenotypic Aalpha R16H fibrinogen (Kingsport): uniquely altered polymerization
associated with slower fibrinopeptide A than fibrinopeptide B release.
Blood Coagul Fibrinolysis.
2007;
18
731-737
- 38
Hanss M, Biot F.
A database for human fibrinogen variants.
Ann N Y Acad Sci.
2001;
936
89-90
- 39
Ingerslev J, Sørensen B, Castaman G, Lloyd J V, Varon J D, Savion N.
New approaches in the measurement of coagulation.
Haemophilia.
2008;
14(Suppl 3)
104-112
- 40
Neerman-Arbez M, Vu D, Abu-Libdeh B, Bouchardy I, Morris M A.
Prenatal diagnosis for congenital afibrinogenemia caused by a novel nonsense mutation
in the FGB gene in a Palestinian family.
Blood.
2003;
101
3492-3494
- 41
Santagostino E, Mancuso M E, Morfini M et al..
Solvent/detergent plasma for prevention of bleeding in recessively inherited coagulation
disorders: dosing, pharmacokinetics and clinical efficacy.
Haematologica.
2006;
91
634-639
- 42
de Moerloose P, Neerman-Arbez M.
Treatment of congenital fibrinogen disorders.
Expert Opin Biol Ther.
2008;
8
979-992
- 43
Santacroce R, Cappucci F, Pisanelli D et al..
Inherited abnormalities of fibrinogen: 10-year clinical experience of an Italian group.
Blood Coagul Fibrinolysis.
2006;
17
235-240
- 44
De Vries A, Rosenberg T, Kochwa S, Boss J H.
Precipitating antifibrinogen antibody appearing after fibrinogen infusions in a patient
with congenital afibrinogenemia.
Am J Med.
1961;
30
486-494
- 45
Ra'anani P, Levi Y, Varon D, Gitel S, Martinowitz U.
[Congenital afibrinogenemia with bleeding, bone cysts and antibodies to fibrinogen].
Harefuah.
1991;
121
291-293
- 46
Schuepbach R A, Meili E O, Schneider E, Peter U, Bachli E B.
Lepirudin therapy for thrombotic complications in congenital afibrinogenaemia.
Thromb Haemost.
2004;
91
1044-1046
- 47
Négrier C, Rothschild C, Goudemand J et al..
Pharmacokinetics and pharmacodynamics of a new highly secured fibrinogen concentrate.
J Thromb Haemost.
2008;
6
1494-1499
- 48
Galanakis D K.
Fibrinogen anomalies and disease. A clinical update.
Hematol Oncol Clin North Am.
1992;
6
1171-1187
- 49
Vakalopoulou S, Rizopoulou D, Zafiriadou E et al..
Management of acute bleeding in a patient with congenital afibrinogenaemia.
Haemophilia.
2006;
12
676-678
- 50
Kreuz W, Meili E, Peter-Salonen K et al..
Pharmacokinetic properties of a pasteurised fibrinogen concentrate.
Transfus Apher Sci.
2005b;
32
239-246
- 51
Bishop P, Lawson J.
Recombinant biologics for treatment of bleeding disorders.
Nat Rev Drug Discov.
2004;
3
684-694
- 52
Tojo N, Miyagi I, Miura M, Ohi H.
Recombinant human fibrinogen expressed in the yeast Pichia pastoris was assembled
and biologically active.
Protein Expr Purif.
2008;
59
289-296
- 53
Grech H, Majumdar G, Lawrie A S, Savidge G F.
Pregnancy in congenital afibrinogenaemia: report of a successful case and review of
the literature.
Br J Haematol.
1991;
78
571-572
- 54
Kobayashi T, Kanayama N, Tokunaga N, Asahina T, Terao T.
Prenatal and peripartum management of congenital afibrinogenaemia.
Br J Haematol.
2000;
109
364-366
Prof. Philippe de MoerlooseM.D.
Haemostasis Unit, University Hospital of Geneva
1211 Geneva 14, Switzerland
Email: Philippe.deMoerloose@hcuge.ch